Lecture 4: Datalink layer

- Functionalities:
 - Encapsulation, addressing
 - Error detection and correction
 - Flow control
 - Media access control

Overview of Data link layer

Network nodes and links

- Network nodes:
 - PCs, Laptop, Routers, Server...
- Links:
 - Communication chanel between adjacent nodes
 - Wired link: Ethernet LAN, ADSL, fiber optic...
 - Wireless link: Wi-fi, FSO, Satellite,...
- Datalink layer responsibility:
 - Transmit data between adjacent elements.

Datalink layer in Layer architecture

IEEE 802.x series

Framing Flow control

Media Access Control

Addressing Error control

Datalink layer

Framing:

- Sender: place the network layer packet into the frame, add header, tail
- Receiver: Remove the header, tail for extracting the network packet.

Addressing:

 Physical address in the header of the frame for identifying the source and the destination.

Framing-Example of HDLC frame

(d) 16-bit control field format

Figure 7.10 HDLC Frame Structure

- Media access control:
 - If the nodes in the network share common media, a Media access control protocol is required.
- Flow control:
 - Control the transmission speed of the sender so that the receiver does not overloaded.
- Error control:
 - Detect and correct errors
 - e.g. parity check, checksum, CRC check

Error control

Error detection Error correction

Principle of error correction

EDC= Error Detection Code (redundancy)

EDC is added to data before sending to the destination.

Parity code

A check bit is added to the original data to ensure that the total number of bit 1 is even (even parity code) or odd (odd parity code)

- Single code
 - Able to detect single bit error
- Two dimension code
 - Detect and correct single bit error

0111000110101011 0

101011
10110 0
011101
001010

 Application: mainly on hardware, ex: while sending data on PCI and SCSI bus

CRC: Cyclic Redundancy Check

- Data is considered as a binary string: D
- We wants to generate a error code with length r
- Choose another binary string of (r+1) bit, G (Generator)
- Find a string R with length r bits such that the concatenation of D and R is a binary number that divides G (modulo 2)

CRC: How to find R

- <D, R> = D.2 r xor R
- Since <D, R> divides G then
 - $D.2^r XOR R = n.G$
 - D.2^r = n.G xor R
 (associativity)
- This means, R is the remainder of the division D.2^r by G (division modulo 2)

 $R = D.2^r \mod G$

R=110, the string to send is 10101001110

D R

R

13

CRC under polynomial form

- 1011 \leftarrow > $x^3 + x + 1$
- Example of some CRC using in the pratice:
 - CRC-8 = $x^8 + x^2 + x + 1$
 - CRC-12 = $x^{12}+x^{11}+x^3+x^2+x$
 - CRC-16-CCITT = $x^{16} + x^{12} + x^5 + 1$
 - CRC-32 = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1
- The longer G is, the more possible that CRC detects errors.
- CRC is widely used in the practice
 - Wi-fi, ATM, Ethernet...
 - Operation XOR is implemented in hardware
 - Capable to detect less than r+1 bits errors

Reaction when errors detected

- Objective: assure that data are transmitted correctly even though the chanel is not realiable.
- Condition
 - Data fram must be transmitted correctly
 - Negligible transmission delay.
- Possible errors
 - Whole frame loss
 - Error frame
 - Loss of error warning message

- Popular techniques:
 - Error detection (as we seen)
 - Acknowledgement/ confirmation
 - Retransmis after timeout
 - Retransmis after a clear confirmation that frame is not arrived
- ARQ technique: automatic repeat request). There are 3 versions:
 - Stop and Wait ARQ
 - Go Back N ARQ
 - Selective Reject ARQ
- Similar to techniques used in flow control.

Media access control

- Point-to-point
 - ADSL
 - Telephone modem
 - Leased Line....
- Broadcast
 - LAN using bus topology
 - Wireless LAN
 - HFC:
 - ...
- Broadcast networks need media access control protocol in order to avoid collision when nodes try to send data.

- Chanel division:
 - Resources of the media is divided into small parts (time -TDMA, frequency- FDMA, Code- CDMA)
 - Distribute a part to each nodes
- Random access:
 - Chanel is not divided, all nodes are allowed to access simultaneously with collision possibility
 - Need a mechanism to avoid collision
 - e.g. Pure Aloha, Slotted Aloha, CSMA/CD, CSMA/CA...
- Sequent access:
 - Nodes can send data one after the other.
 - Token Ring, Token Bus....

Channel division

- FDMA: frequency division multiple access
- TDMA: time division multiple access
- CDMA: code division multiple access

TDMA và FDMA

ex

4 stations

FDMA

TDMA:

- Several senders can share the same frequency on a single physical channel.
- Signals come from different senders are encoded by a different random code
- Encrypted signals are mixed and then transmit on a common frequency.
- The signals are recovered at the receiver by using the same codes as at sender side.
- CDMA use the spread spectrum theory, CDMA shows a lot of advantages that other technology cannot achieve.

http://en.wikipedia.org/wiki/Spread_spectrum

DS-CDMA System Overview (Forward link) CDMA is a multiple spread spectrum. Freq. Freq. Freq. BPF BPF Data A Despreade > Data A MS-A Code A Code A Freq. Freq. Freq. **BPF** BPF Data B Despreade > Data B Code B MS-B Code B BS

Difference between each communication path is only the spreading code

Random access: Pure Aloha

- Aloha is used in mobile network of 1G, 2.5G, 3G using GSM technology.
- Pure Aloha:
 - When one sender has data to send, just sends it
 - If while sending, the senders receive data from other stations → there is collision. All stations need to resend their data.
 - There are possibility to have collision when retransmit.
 - Problem: Sender does not check to see if the chanel is free before sending data
 - Grey package are having overlap in time → causing collision

Random access: Slotted Aloha

- Times axe is divided into equal slots.
- Each station sends data only at the beginning of a time slot.

Slotted ALOHA protocol (shaded slots indicate collision)

- → Collision possibility is reduced
- Still have collision in grey package

- CSMA: Carrier Sense Multiple Access
- CSMA idea is similar to what happens in a meeting.
- CSMA:
 - The sender "Listen before talk"
 - If the channel is busy, wait
 - If the chanel is free, transmit

- CSMA: Sender listens before transmission:
 - If the channel is free, send all the data
 - If the channel is busy, wait.
- Why there are still collision?
 - Due to propagation delay

Collision in CSMA

- Assume that there are 4 nodes in the channel
- The propagation of the signal from one node to the other requires a certain delay.
- Ex:
 - Transmissions from B and D cause collision

- CSMA/CA is used WIFI standard IEEE 802.11
- If two stations discover that the channel is busy, and both wait then it is possible that they will try to resend data in the same time.
 - → collision
- Solution CSMA/CA.
 - Each station wait for a random period → reduce the collision possibility

- Used in Ethernet
- CSMA with Collision Detection:
 - "Listen while talk".
- A sender listen to the channel,
 - If the channel is free then transmit data
 - While a station transmit data, it listens to the channel. If it detects a collision then transmits a short signal warning the collision then stop
 - Do not continue the transmission even in collision as CSMA
 - If the channel is busy, wait then transmit with probability p
- Retransmit after a random waiting time.

Comparison between channel division and random access

- Channel division
 - Efficient, treat stations equally.
 - Waste of resources if one station has much smaller data to send than the others

Random access

- When total load is small: Efficient since each station can use the whole chanel
- When total load is large: Collision possibility increases.
- Token control: compromise between the two above methods.

Token Ring

- A "tocken" is passed from one node to the other in a ring topo
- Only the token holder can transmit data
- After finishing sending data, the token need to be passed to next nodes.
- Some problem
 - Time consuming in passing token
 - Loss of token due to some reasons

Summary on Media access control mechanisms

- Channel division
- Random access
- Token
- What do you thinks about their advantages and weaknesses

Flow control

- Goal: Make sure that the sender does not overload the receiver
- Why overloading?
 - The receiver stores data frame in buffer.
 - Receiver performs some processing before deliver data to the upper level.
 - Buffer could be full, leaving no space for receiving more frame → some data fram must be dropped.
- Problem of errors in transmission is excluded
 - All frames are transmitted to correct receiver without error
 - Propagation time is small and could be ignored
- Solution
 - Stop-and-wait mechanism
 - Sliding window mechanism

- Principles
 - Transmitter sends a single frame
 - Receiver receives the fram, process and then informs the transmitter that it is ready to receives next frames by a clear acknowledgement (ACK).
 - Transmitter waits until reception of the ACK before sending next frames.

- Advantage
 - Simple, suitable for transmission of big size frames
- Weakness
 - When frames are small, the transmission chanel are not used efficiently.
 - Cannot use often for big size frame due to
 - Limitation in buffer size
 - Big size frame prones to bigger error probability
 - In shared medium, it is not convenient to leave one station using medium for long time

Sliding window: principle

- Transmitter sends more than one frame without waiting in order to reduce waiting time
- Transmitted frame without ACK will still be stored in buffer.
- Number of frame to be transmitted without ACK depends on the size of buffer at transmitter
- When transmitter receives ACK, it realises the successfully transmitted frame from buffers
- Transmitter continues sending a number of frame equivalent to the number of successfully trasmitted frames.

- Assume that A and B are two stations connected by a full duplex media
 - B has a buffer size of n frame.
 - B can receives n frame without sending ACK
- Acknowledgement
 - In order to keep track of ACKed frames. It is necessary to number frames.
 - B acknowledge a frame by telling A which fram B is waiting for (by number of frame), implicitely saying that B receives well all other frame before that.
 - One ACK frame serves for acknowledges several frames.

Sliding windows: principle

Window list the frames in waiting to receive

Sliding windows

(a) Sender's perspective

- Frame are numbered. The maximum number must not be smaller than the size of the window.
- Frame are ACKed by another message with number
- Accumulated ACK: If frame 1,2,3,4 are well receive, just send ACK 4
- ACK with number k means all frame k-1, k-2 ··· already well received.

- Transmitter needs to manage some information:
 - List of frames transmitted sucessfully
 - List of frames transmitted without ACK
 - List of frames to be sent immediatly
 - List of frames NOT to be sent immediately
- Receiver keep tracks of
 - List of frames well received
 - List of frames expected to receive

Piggy backing

- A and B transmitte data in both sides
 - When B needs to send an ACK while still needs to send data, B attaches the ACK in the Data frame: Piggybacking
 - Otherwise, B can send an ACK frame separatly
 - After ACK, if B sends some other data, it still put the ACK information in data frame.
- Sliding window is much more efficient than Stopand-Wait
- More complicated in management.

- Given a link with rate R=100Mbps
- We need to send a file over data link layer with file size L=100KB
- Assume that the size of a frame is: 1KB, header size is ignored
- Round trip time (RTT) between 2 ends of the link is 3ms
- An ACK message is sent back from receiver whenever a frame is arrived. Size of ACK message is negligible
- What is the transmission time required if using Stop-and-wait mechanism?
- Transmission time with sliding window if the window size is =7?
- Which size of window allow to obtain the fastest transmission?

Transmission time with Stopand-wait

Transmission time with Stopand-wait

- T total= Nb.frame * (T_transmit + RTT)
- T_transmit (F) = L(Frame)/ R
- Nb. frame = L/L(frame)
- With the given parametters
- Nb. frame =100 KB/1KB =100
- T_transmit (F) = 1KB/100 Mbps= $10^3*8/10^8 = 8.10^-5 (s)=0.08 (ms)$

Trasmission time with window size 7

- T fastest= (T transmit 7 frames+ wait) * Nb.
 Waiting time.
- 1 waiting= (T transmit 1 frame+ RTT) T transmit 7 frames
- Nb. Waiting time= Nb frame /7

Fastest transmission time with sliding window

- Fastest transmission time obtained if transmitter receives ACK of the first frame when it finishes transmitting the last frame of the sliding window.
- Window size:W
- T transmit(W fram) >= T transmit first frame + RTT

Fastest transmission time with sliding window

- T transmit (W frame) = W * 1KB/R
- => (W-1)*1KB/R >= RTT
- => W >= RTT*R/1KB +1
- W>= 3ms * 100 Mbps/ 1KB + 1
- W>=38.5
- Smallest value of W = 39
- Time to transmit all data L = L/R + RTT =8
 ms +3ms =11 ms