Lecture 7: Routing

Reading 5.2 Computer Networks, Tanenbaum

- What is routing?
- Static routing and dynamic routing
- Routing algorithms and protocols

What is routing?

Routing principals Forwarding mechanism "Longest matching" rule

Routing and Forwarding principles (1)

- When a host send an IP packet to another host
 - If the destination and the source are in the same network (by IP address): Transfer directly by Layer 2
 - If the destination is in a different network with the source: Send through some other routers (need to choose route)

Routing and Forwarding principles (2)

- The mechanism based on what a host or a router decides how to forward a packet to a destination.
- Result of the routing is a routing table
- What to consider in routing
 - Building routing table
 - Information need to calculating route
 - Routing algorithm and protocol.

- Router is the device that forwards data between networks
 - Is a computer with particular hardware
 - Connects multiple networks together, has multiple network interfaces
 - Forward packets according to routing table
- Within a network (hosts having identical networkID part), router is not used for forwarding data.

Some examples of routers...

BUFFALO BHR-4RV

PLANEX GW-AP54SAG

YAMAHA RTX-1500

Cisco 2600

Router ngoại vi

Hitachi GR2000-1B

Juniper M10

Cisco 3700

Foundry Networks NetIron 800

Router co trung

Cisco CRS-1

Router mang truc

http://www.cisco.com.vn http://www.juniper.net/

http://www.buffalotech.com

Routing table

- Lists of possible routes, saved in the memory of router
- Main components of routing table
 - Destination network address/network mask
 - Next router

```
#show ip route
Prefix Next Hop
203.238.37.0/24 via 203.178.136.14
203.238.37.96/27 via 203.178.136.26
203.238.37.128/27 via 203.178.136.26
203.170.97.0/24 via 203.178.136.14
192.68.132.0/24 via 203.178.136.29
203.254.52.0/24 via 203.178.136.14
202.171.96.0/24 via 203.178.136.14
```

Routing table and forwarding mechanism (1)

Network	Next-hop	Interface
10.0.0.0/24	А	eth1
172.16.0.0/24	С	eth2
192.168.0.0/24	В	eth3

Rule: No routes, no reachability!

- Assume that there are more than one entry matching with a destination network in routing table.
- Destination address: 11.1.2.5
- What should be chosen as the next hop?

Network	Next hop	
11.0.0.0/8	Α	
11.1.0.0/16	В	
11.1.2.0/24	С	

Destination address:

11.1.2.5 = 00001011.00000001.00000010.00000101

Route 1:

11.1.2.0/24 = 00001011.00000001.00000010.00000000

Route 2:

11.1.0.0/16 = 00001011.00000001.00000000.00000000

Route 3:

Network	Next-hop
10.0.0.0/24	Α
172.16.0.0/24	С
192.168.0.0/24	Direct
0.0.0.0/0	С

Q. What is the routing table in C?

Internet

Q: What if C is connected to the Internet?

- If router does not find a route to a destination in its routing table, default route is necessary
 - Default route is defined for all destination networks that are not figured in the routing table.
- \bullet 0.0.0.0/0
 - Is a special notation for all destination networks

- How many networks in the Internet?
- There will be a lot of entries in the routing table?
- The entries to sub-networks of the same "big" network can be aggregated inorder to reduce the size of routing table.

- Example of Viettel network
 - Viettel own a big IP address space
 - 203.113.128.0-203.113.191.255
 - For connecting to a subnet (client) of Viettel, routing table needs only to have a route to Viettel network.
- Default route is a type of route aggregation
 - \bullet 0.0.0.0/0

- Step 1 : If TTL = 1(or TTL = 0), destroy the packet and send error message. End.
- Step 2: If TTL >1, extract the IP destination address of the packet.
 Apply the mask of networks in the routing table to IP destination address to find corresponding network addresses.
- Step 3 : Compare the obtained network addresses with networks in routing table.
 - If find a matching route, forward the packet to the interface of the route, reduce TTL by 1.
 - If no route match, check if there is a default route (with network 0.0.0.0 /0).
 - If there is a default route, forward the packet to the corresponding interface and reduce TTL by 1.
 - If there is no default route: destroy the packet, send an error message back to the source.

Exercises

• A router has the following (CIDR) entries in its routing table:

Address/mask Next hop

135.46.56.0/22 Interface 0

135.46.60.0/22 Interface 1

192.53.40.0/23 Router 1

0.0.0.0/0 Router 2

- For each of the following IP addresses, what does the router do if a packet with that address arrives?
- (a) 135.46.63.10
- (b) 135.46.57.14
- (c) 135.46.52.2
- (d) 192.53.40.7
- (e) 192.53.56.7

Solution:

Apply longest matching rule.

Apply longest matching rule.

(students should explain why by matching binary form of the addresses)

- (a) $135.46.63.10 \rightarrow Interface 1$
- (b) $135.46.57.14 \rightarrow Interface 0$
- (c) 135.46.52.2 → Router 2 (default route)
- (d) $192.53.40.7 \rightarrow \text{Router } 1$
- (e) 192.53.56.7 → Router 2 (default route)

 Assume that we have a network with following topology. What should be routing table of routers B, C, D in order to assure that all hosts can send data to each other and to the Internet.

Solution

Routing table on B

Network	Next hop
133.133.0.0/16	С
155.0.0.0/8	Direct
203.203.203.0/24	D
0.0.0.0/0	D

Routing table on C

Network	Next hop
133.133.0.0/16	Direct
155.0.0.0/8	В
203.203.203.0/24	D
0.0.0.0/0	D

Routing table on D

Network	Next hop
133.133.0.0/16	С
155.0.0.0/8	В
203.203.203.0/24	Direct
0.0.0.0/0	X

Example of routing table on a host

C:\Documents and Settings\hongson>netstat -rn

Route Table

Interface List

0x1MS TCP Loopback interface

0x2 ...08 00 1f b2 a1 a3 Realtek RTL8139 Family PCI Fast Ethernet NIC -

Active Routes:

Network	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.1.1	192.168.1.34	20
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
192.168.1.0	255.255.255.0	192.168.1.34	192.168.1.34	20
192.168.1.34	255.255.255.255	127.0.0.1	127.0.0.1	20
192.168.1.255	255.255.255.255	192.168.1.34	192.168.1.34	20
224.0.0.0	240.0.0.0	192.168.1.34	192.168.1.34	20
255.255.255.255	255.255.255.255	192.168.1.34	192.168.1.34	1

Default Gateway: 192.168.1.1

Example of routing table in a Router


```
#show ip route
Prefix
                    Next Hop
203.238.37.0/24 via 203.178.136.14
203.238.37.96/27 via 203.178.136.26
203.238.37.128/27 via 203.178.136.26
203.170.97.0/24 via 203.178.136.14
192.68.132.0/24 via 203.178.136.29
203.254.52.0/24 via 203.178.136.14
202.171.96.0/24 via 203.178.136.14
```

Static and dynamic routing

Static routing

Dynamic routing

Advantage – Weakness

Problem of update routing table

- When topology change: new networks, a router is out power
- It is necessary that routing tables are updated
 - In theory, all routers need to be updated
 - In reality, only few routers need to be updated

Network	Next-hop	
192.168.0.0/24	В	
172.16.0.0/24	В	
10.0.0.0/24	Direct	

B

1′	72	16	1 ($\frac{1}{24}$
I,	12.	LO.	1.0	1/ 24

Next-hop
Α
С
Direct

172.16.1.0/24

Network	Next-hop
10.0.0.0/24	В
192.168.0.0/24	В
172.16.0.0/24	Direct

??

Router A	Router B	Router C	Router D
			New Network
10.0.0.0/24	192.168.0.0/24	172.16.0.0/24	172.16.1.0/24

- Static routing
 - Entries in the routing tables are updated manually by network administrator.
- Dynamic routing
 - The routing table is updated automatically by some routing protocols

Static routing

- When there is some failures on a route:
 - Impossible to access to Internet even though there is an alternative route
 - Admin needs to update routing table at 10.0.0.1

Extract of routing table at 10.0.0.1

Prefix	Next-hop
0.0.0.0/0	10.0.0.3

Internet 10.0.0.3 10.0.0.2 Next-hop 10.0.0.3 10.0.0.1 Next-hop 10.0.0.1

Dynamic routing

- When there is failure :
 - The entries related on the affected routes are updated automatically

Extract of routing table of 10.0.0.1

Prefix	Next-hop	
0.0.0.0/0	10.0.0.2	
0.0.0.0/0	10.0.0.3	

Alternative route

Next-hop 10.0.0.3

Affected route

- Pros
 - Stable
 - Secure
 - Not influence by external factor
 - Không bị ảnh hưởng bởi các yếu tố tác động
- Cons
 - Not flexible
 - It is impossible for using automatically backup routes
 - Difficult to manage

- Pros
 - Easy to manage
 - Backup routes are used automatically when there are failures

Cons

- Not secure
- Routing protocols are complex

Routing algorithm and protocols

Dijkstra and Bellman-Ford Algo link-state and distance-vector protocols

Graph representing the networks

- Graph with nodes (routers) and edges (links)
- Weight on each link c(x,y)
 - Weigh can be bandwidth, delay, congestion level, cost...
 expressing the contribution of the link in the total cost of a
 route
- Routing algorithm: Determine the shortest path (in term of weight) between a pair of two nodes.

- SPT Shortest Path Tree
- Compose of shortest paths from a single source node to all other nodes.
- Each source node has it own SPT

Two classes of routing algorithm

- Link-state
 - Gathering the topology information at a node -> build graph
 - Run a path calculation algorithm on the node
 - Build routing table on the node
 - OSPF routing protocol
- Distance vector
 - Each node build temporary a routing table
 - Exchange routing tables for finding better routes through the neighbors
 - RIP routing protocol

Notations:

- G = (V,E): Graph representing the network: V: set of nodes, E: set of links
- c(x,y): cost of using link x to y;
 - = ∞ f the two nodes are not linked together
- d(v): current cost for going from the source node to node v
- p(v): node right before v on the route from the source to destination
- T: Set of nodes whose shortest paths have been identified.

Link-state algorithms-Dijikstra

- Procedures:
- Init():

```
For each node v, d[v] = \infty, p[v] = NIL
d[s] = 0
```

• Improve(u,v), where (u,v) is an edge of G if d[v] > d[u] + c(u,v) then d[v] = d[u] + c(u,v)p[v] = u

Link-state algorithms- Dijikstra

```
    Init();
    T = Φ;
    Repeat
    u: u ∉ T | d(u) is the smallest;
    T = T ∪ {u};
    for all v ∈ neighbor(u) and v ∉ T
    improve(u,v);
    Until T = V
```

Browse all u from those are nearest to the source, and try to improve the route from source to all neighbor of u by going through u

St	ер	Т	d(v),p(v)	d(w),p(w)	d(x),p(x)	d(y),p(y)	d(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux 🕶	2,u	4,x		2,x	∞
	2	uxy <mark>←</mark>	2,u	3,y			4,y
	3	uxyv		3,y			4,y
	4	uxyvw •					4,y

5 uxyvwz

Routing table of u:

tination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,🖄

Distance-vector algorithm Bellman-Ford (1)

Definitions:

 $d_x(y) := cost of the shortest path from x to y$

We have: Bellman-Ford equation:

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

For all v are adjacent to x

Distance-vector algorithm Bellman-Ford (2)

Easy to see that,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

According to B-F eq. :

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

Amongst all paths from u > z, choose to go through the neighbo of u that make the path shortest

Main ideas:

- Distance vector: vector of all distance from the current node to all other nodes
- Each node send periodically the its distance vector to its adjacent nodes
- When a node x receives a distance vector, it updates its distance vector by using equation Bellman-ford
- With some condition, the distance D_x(y)
 in each vector will converge to the
 smallest value of d_x(y)

At each node:

Wait for a DV from neighbor

Re-calculate its DV

If DV changes, Inform its neighbor

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

Node x

لِي <u>Node z</u>

Cost to
$$\begin{array}{c|cccc}
 & X & Y & Z \\
\hline
 & X & \infty & \infty \\
\hline
 & X & \infty & \infty
\end{array}$$

$$\begin{array}{c|ccccc}
 & X & Y & Z \\
\hline
 & X & \infty & \infty & \infty
\end{array}$$

$$\begin{array}{c|ccccc}
 & X & Y & Z & \infty & \infty
\end{array}$$

 $\infty \infty$

x y z

 ∞ ∞

Time

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

 $D_x(z) = \min\{c(x,y) +$ $D_y(z)$, $c(x,z) + D_z(z)$ $= min\{2+1, 7+0\} = 3$

Node x

	Cost to				Cost to			to	
		х у	Z			X	У	Z	
	X	0 2	7		X	0	2	3	
رح.	У	∞ ∞	∞ \	ć	У	2	0	1 \\	
#	7			7	7	7	1	0 /	

ŧ

Cost to

		X	У	Z	
	X	0	2	3	
Ţ	У	2 3	0	1	
+	Z	3	1	0	

Node y

Cost to

	X	У	Z	
X	0	2	7	
У	2	0	1	
7	_	_	_	

Cost to

Cost to

Node z

Cost to
$$\begin{array}{c|cccc}
x & y & z \\
\hline
x & \infty & \infty & \infty \\
\hline
x & \infty & \infty & \infty
\end{array}$$

$$\begin{array}{c|cccc}
x & \infty & \infty & \infty \\
\hline
x & \infty & \infty & \infty \\
\hline
x & 0 & 0 & \infty
\end{array}$$

Cost to

	X	У	Z
X	0	2	7
У	2	0	1 /
7 /	9	1	0

Time

Comparison of Link-state and Distance vector

Number of exchange messages

- LS: n nodes, E links, O(nE) messages
- DV: Exchange only with neighbor

Convergent time

- LS: Complexity O(n²)
- DV: Varies

Reliability: If one routers provide incorrect information

LS:

- The router may send out incorrect cost
- Each node calculate its own routing table

<u>DV:</u>

- Incorrect distance vector may be sent out
- Each node calculate its
 DV based to what receives
 from the neighbor
 - Error propagates in the network.

