
1

Lecture 8:
Transport layer

Reading 6.2, 6.3, 6.4, 6.5
Computer Networks, Tanenbaum

2

Contents

l  Principles of transport layer
l  UDP protocol
l  TCP protocol

3

Transport layer in OSI model
Application

(HTTP, Mail, …)

Transport
(UDP, TCP …)

Network
(IP, ICMP…)

Datalink
(Ethernet, ADSL…)

Physical
(bits…)

Support applications

Transferring data between applications

Routing and forwarding data between
hosts

4

Principle of transport layer (1)
l  Provide transport means

between end applications
l  Sender:

l  Receives data from application
l  Place data in segments and

give to network layer
l  If the data size is too big, it is

divided into many segments
l  Receiver:

l  Receives segments from
network layer

l  Reconstitute data from
segments and deliver to the
application

application
transport
network
data link
physical

application
transport
network
data link
physical

5

Principle of transport layer (2)
l  Transport layer is installed in

end systems
l  Not installed in routers,

switches…
l  Two kinds of transport layer

services
l  Reliable, connection-

oriented, e.g TCP
l  Not reliable, connectionless,

e.g. UDP

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

6

Why two kinds of service?

l  Requirements from application layer are various
l  Some applications need transport service with 100%

fiability such as mail, web…
l  Should use TCP transport service

l  Some applications need to transmit data as fast as
possible, with some fault tolerance, e.g. VoIP, Video
Streaming
l  Should use UDP transport service

7

Applications and transport services

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application protocols

SMTP
Telnet
HTTP
FTP
Specific protocols
(e.g. RealNetworks)
Specific protocols
(e.g., Vonage,Dialpad)

Transport protocols
TCP
TCP
TCP
TCP
TCP or UDP

Usually UDP

8

Functionalities

MUX/DEMUX

9

Mux/Demux

Multiplexing Demultiplexing

Network protocols

HTTP FTP Chat HTTP FTP Chat

Transport

 protocols

Application
protocols

10

How does it Mux/Demux?

l  How to distinguish
applications running in the
same hosts?
l  Use an identifier called port

number (16 bits)
l  Each process is assigned a

port
l  Socket: A pair of IP address

and port
l  Socket identifies an unique

application process all over the
world

source port # dest port #
32 bits

application
data

(message)

other header fields

TCP/UDP segment format

11

Checksum
l  Phát hiện lỗi bit trong các đoạn tin/gói tin
l  Nguyên lý giống như checksum (16 bits) của giao thức

IP
l  Ví dụ:

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Tổng
Checksum

12

UDP
User Datagram Protocol

13

“Best effort” protocols
l  Why UDP?

l  No need to establish connection (cause delay)
l  Simple
l  Small header
l  No congestion control à send data as fast as possible

l  Main functionality of UDP?
l  MUX/DEMUX
l  Detect error by checksum

14

Datagram format

source port # dest port #

32 bits

Application
data

(message)

length checksum

l  Data unit in UDP is
called datagram

Length of the
datagram in

byte

15

Issues of UDP
l  No congestion control

l  Cause overload of the Internet
l  No reliability

l  Applications have to implement themselves
mechanisms to control errors

16

Error control

17

Error control

l  How to detect error?
l  Checksum

l  How to inform sender?
l  ACK (acknowledgements):
l  NAK (negative acknowledgements): tell sender

that pkt has error
l  Reaction of sender?

l  Retransmit the error packet once received NAK

18

Error control

Time Time

Sender Receiver

pkt0

pkt1

pkt1

NAK

ACK

send pkt0

pkt1 is
corrupted

rcv ACK
send pkt1

rcv NAK
resend pkt1

pkt1 is
OK

19

Error in ACK/NAK
l  ACK/ NAK may be

corrupted
l  Packet is resent
l  How to solve

packet repetition?
l  Use Seq.#

Time Time

Sender Receiver

pkt0

pkt1

pkt1

ACK

ACK

send pkt0

pkt1 is
OK

rcv ACK
send pkt1

Rcv corrupted
packet! resend pkt1

pkt0 is
OK

rcv pkt1

duplicate,

discard it

20

Error control without NAK

Time Time

Sender Receiver

pkt0

pkt1

pkt0

ACK1

ACK0

send pkt0

pkt1 is
OK

rcv ACK0
send pkt1

rcv ACK1
send pkt0

pkt0 is
OK

pkt0 is corrupted

pkt0

ACK1

rcv ACK1
resend pkt0

21

Chanel with error and packet
lost
l  Data and ACK can be lost

l  If no ACK is received?How sender knows and
decides to resend data?

l  Sender should wait for ACK for a certain time.
Timeout!

l  How long should be timeout?
l  At least 1 RTT (Round Trip Time)
l  Need to start a timer each time sending a packet

l  What if packet arrives and ACK is lost?
l  Packet should be numbered.

22

Illustration

23

Illustration

24

Transmission in pipeline

Sender Receiver

ACKs

Data pkts

Sender Receiver

ACK

 1 data pkt

25

Comparison of efficiency

0

sender

time

RTT

L / R

RTT + L / R

Performance = L / R
RTT + L / R

time

sender receiver

RTT

L / R

RTT + L / R

time time

Performance = 3 * L / R
RTT + L / R

stop-and-wait Pipeline

L: Size of data pkt
R: Link bandwidth
RTT: Round trip time

26

TCP
Transmission Control Protocol

TCP segment structure
Connection management

Flow control
Congestion control

27

Overview of TCP
l  Connection oriented

l  3 steps hand-shake
l  Data transmission in stream of byte, reliable

l  Use buffer
l  Transmit data in pipeline

l  Increase the performance
l  Flow control

l  Sliding windows
l  Congestion control

l  Detect congestion and solve

28

TCP segment

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window

Urg data pnter checksum
F S R P A U head

len
not

used

Options (variable length)

URG: urgent data

ACK: ACK #

PSH: data needs to
be sent immediately

RST, SYN, FIN:
Flag for special

segment

- For flow control
- with sliding window

- For reliable
transmission

29

How TCP provide reliable service?

l  In order to assure if data arrives to
destination:
l  Seq. #
l  Ack

l  TCP cycle life:
l  Connection establishing

l  3 steps
l  Data transmission
l  Close connection

30

Acknowledgement in TCP
Seq. #:

l  Index of the first byte
of the segment in the
data stream

ACK:
l  The index of the first

byte expected to
receive from the
other-side

l  Implicitly to confirm
that the ACK senders
have received well
previous bytes

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time

simple telnet scenario

31

Connection establishing in TCP :
3 steps

l  Bước 1: A sends SYN to B
l  Indicate initial value of seq # of

A
l  No data

l  Bước 2: B receives SYN,
replies by SYNACK
l  B initiates the buffer on its side
l  Indicate initial value of seq. # of

B
l  Bước 3: A receives SYNACK,

replies ACK, maybe with data.

A B

SYN

ACK

ACK/SYN

32

Close connection
A

FIN

B

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t
closed

l  Step 1: Send FIN to B

l  Step 2: B receives FIN, replies
ACK, closes the connection
and sends FIN.

l  Step 3: A receives FIN, replies
ACK, go to “waiting”.

l  Bước 4: B receives ACK.
close connection

33

Symplified life cycle of TCP

SYN_SENT

FIN_WAIT_1

FIN_WAIT_2 ESTABLISHED

Receive ACK
Send nothing

Receive SYN/ACK
Send ACK

CLOSED

TIME_WAIT

CLOSED

LISTEN LAST_ACK

SYN_RCVD CLOSE_WAIT

ESTABLISHED

Receive SYN
Send SYN/ACK

Receive ACK
Send nothing

Receive FIN
Send ACK

Send FIN

Receive ACK
Send nothing

Client application
Initiates a TCP connection Server application

Creates a listen socket

Send SYN

Send FIN

Wait 30 sec.

Receive FIN
Send ACK

Client application
Initiates close connection

34

Flow control

35

Flow control(1)
A B

A B

Slow Overload

36

Flow control (2)

l  Control the amount of data to be sent
l  Assure the best efficiency
l  Avoid overloading the receiver.

l  Two windows
l  Rwnd: Receive window on receiver side
l  CWnd: Congestion window on sender side

l  The maximum amount of data to be sent should be
min(Rwnd, Cwnd)

37

Flow control TCP

l  Size of free buffer
= Rwnd
= RcvBuffer-[LastByteRcvd

- LastByteRead]

38

Information exchanged on
Rwnd

A B

ACK (rwnd = 100)

data

data

l  Receiver inform
regularly to senders
the value of Rwnd in
acknowledgment
segments

39

Congestion control in TCP

40

Overview of Congestion control
l  When congestion happens?

l  Too many pairs of senders-receivers in the network
l  High traffic

l  Consequence of congestion
l  Packet loss
l  Reduce of throughput, increase of delay
l  Network situation become worst with reliable protocol

such as TCP.
Congestion

 occur

41

Principles of congestion control

l  Slow-start
l  Increases the transmission

speed in exponential order
l  Increase until a threshold

l  Congestion avoidance
l  Increase the transmission

speed in linear order until
congestion is detected

l  How to detect the
congestion?
l  By packets lost? 2

4

6

8

10

12

14

16

18

20

SS

Threshold=16

cwnd

42

TCP Slow Start (1)
l  Main idea

l  Initiate cwnd =1 MSS (Maximum segment size)
l  Increase cwnd =+1 MSS after each reception of a

ACK packet from the receiver.
l  Increase slowly but the speed increase in

exponential order
l  Increase until a threshold: ssthresh
l  After that TCP move to congestion avoidance

period

43

TCP Slow Start (2)
Host A

one segment
RT

T

Host B

time

two segments

four segments

44

Congestion avoidance

l  Main idea
l  Increase cwnd in

additional order
until cwnd reaches
to ssthresh

l  After each RTT,
cwnd =cwnd + 1
MSS

Host A Host B

one segment

RT
T

time

two segments

three segments

45

TCP reaction in congestion
situation (1)

l  Reduce the transmission speed
l  How to detect the congestion?

l  If there are some re-transmits è There might be
congestion

l  When the source node need to re-transmit
data?
l  Timeout!
l  When it receives multiple ACK for the same

segment

46

TCP reaction in congestion
situation(2)
l  When sender reach timeout but still does not receive

ACK for a segment
l  TCP sets ssthresh = ½ current cwnd
l  TCP sets cwnd =1 MSS
l  TCP move to slow start phase

l  If sender receives 3 identical ACK
l  TCP sets ssthresh = ½ current cwnd
l  TCP sets cwnd = ssthresh
l  TCP move to “congestion avoidance”

47

Congestion control – illustration

2

4

6

8

10

12

14

16

18

20

22
Timeout

3 ACKs
SS

SS
AI

AI

AI

Threshold=16

Threshold=10

Threshold=6

Threshold is set to half of cwnd (20)
And slow start starts

Threshold is set to half of cwnd (12)
And additive increase starts

cwnd

Step

Exercise

l  Assume that we need transmit 1 file
l  File size O =100KB over TCP connection
l  S is the size of each TCP segment, S = 536 byte
l  RTT = 100 ms.

l  Assume that the congestion window size of
TCP is fixed with value W.
What is the minimum transmission time? If the
transmission speed is
l  R = 10 Mbit/s;
l  R= 100 Mbits/s. 48

Solution (cont.)

l  T transmit (W packet) = W * S/R
l  Transmit without waiting:
l  => (W-1)*S/R >= RTT
l  => W >= RTT*R/S +1
l  Time to transmit all data L = L/R + RTT
l  R=100 Mbps

l  W>= 100ms * 100 Mbps/ (536*8) + 1

49

Exercise

l  Assume that we need transmit 1 file
l  File size O =100KB over TCP connection
l  S is the size of each TCP segment, S = 536 byte
l  RTT = 100 ms.

l  Assume that the congestion window of TCP works
according to slow-start mechanism.

l  What is the size of the congestion window when
the whole file is transmited.

l  How much of time is required for transmitting the
file? If R = 10 Mbit/s; R= 100 Mbits/s. 50

