Stored Procedure & Trigger

NGUYEN HongPhuong

Email: phuongnh@soict.hust.edu.vn

Site: http://users.soict.hust.edu.vn/phuongnh
Face: https://www.facebook.com/phuongnhbk
Hanoi University of Science and Technology

Contents

1. Stored Procedure
1.1. Introduction
1.2. Syntax

2. Trigger
2.1. Introduction
2.2. Syntax

1. Stored Procedure

1.1. Introduction
1.2. Syntax

1.1. Introduction to stored procedure

[1 Concepts:

B A stored procedure (SP) is a set of
Structured Query Language (SQL)
statements with an assigned name, which
are stored in a relational database
management system as a group, so it can
be reused and shared by multiple
programs.

B Stored procedures can access or modify
data in a database, but it is not tied to a
specific database or object, which offers a
number of advantages.

1.1. Introduction to stored procedure

[1 Benefits:

B provides an important layer of security
between the user interface and the
database.

B preserves data integrity because
information is entered in a consistent
manner.

B improves productivity because statements
in a stored procedure only must be written
once.

B offer advantages over embedding gueries
in @ graphical user interface (GUI).

1.1. Introduction to stored procedure

B Since stored procedures are modular, it is
easier to troubleshoot when a problem arises
in an application.

B Stored procedures are also tunable, which
eliminates the need to modify the GUI source
code to improve its performance. It's easier to
code stored procedures than to build a query
through a GUI.

B can reduce network traffic between clients and
servers, because the commands are executed
as a single batch of code. This means only the
call to execute the procedure is sent over a
network, instead of every single line of code
being sent individually.

1.1. Introduction to stored procedure

B Stored procedures in SQL Server can
accept input parameters and return
multiple values of output parameters;

1.1. Introduction to stored procedure

[1 Stored procedure vs. function

B Stored procedures and functions can be
used to accomplish the same task. Both
can be custom-defined as part of any
application, but functions are designed to
send their output to a query or T-SQL
statement. Stored procedures are designhed
to return outputs to the application, while a
user-defined function returns table
variables and cannot change the server
environment or operating system
environment.

1.1. Introduction to stored procedure

[0 There are 3 types:

B System SP: provided by SQL Server, whose
name starts with prefix "sp_", is used to
manage SQL Server and display database
and user-information.

B SP extensions: dynamic link libraries
(DLLs), written in languages like C, C ++,
..., that SQL Server can load and execute.

External SP: name starts with "xp_"

User-defined SP

1.2. Syntax

1 You can use T-5SQL, Enterprise Manager

or wizard to create SP.
[Syntax in SQL Server:

CREATE PROC[EDURE] procedure_name
{;number}

{@parameter data_type}[=default |
NULL]J[VARYING][OUT PUT]]

'WITH {RECOMPILE | ENCRYPTION |
RECOMPILE,ENCRYPTION }]

[FOR REPLICATION]

AS sqgl_statement

10

Example

USE CompanySupplyProduct

GO

IF EXISTS(SELECT name FROM sysobjects
WHERE name='pCompany' AND type="'P")
DROP PROCEDURE pCompany

GO

CREATE PROCEDURE pCompany

AS SELECT Name, NumberofEmployee
FROM Company

ORDER BY Name DESC

GO

[0 Run this procedure:
B EXEC pCompany

] To see the content of a SP:
B EXEC sp_helptext pCompany

[1 Drop a SP:
B DROP PROCEDURE procedure_name

12

Creating a group of SP

CREATE PROC group_sp;il

AS SELECT * FROM Company

GO

CREATE PROC group_sp:2

AS SELECT Name FROM Company

GO

CREATE PROC group_sp:3

AS SELECT Name, Address FROM Company
GO

[0 get a list of name and address of the
companies, use the following command:

B EXEC group_sp;3

13

Parameters

@parameter data_type [=default | NULL]
[VARYING] [OUTPUT]

@parameter: name of parameter inside the
procedure, can declare up to 1024 parameters
inside a SP.

data_type: any data type defined by the system
or user-defined, except the image data type.

Default: Specifies the default value for the
parameter.

VARYING: Applies to the returned recordset.
OUTPUT: Defines this as a return parameter.

14

An example

Write a stored procedure that takes 5
parameters as input, calculates the
average, and outputs it:

CREATE PROCEDURE scores

@scorel smallint,

@score2 smallint,

@score3 smallint,

@score4 smallint,

@score5 smallint,

@myAvg smallint OUTPUT

AS SELECT @myAvg = (@scorel + @score2 +
@score3 + @score4 + @score5) / 5

15

Pass/receive values for/from parameters

1 Transmitting in the order

DECLARE @AvgScore smallint

EXEC scores 10, 9, 8, 8, 10, @AvgScore OUTPUT
SELECT 'The Average Score is: ',@AvgScore

Go

[0 Transmitting in any order

DECLARE @AvgScore smallint

EXEC scores

@scorel=10, @score3=9, @score2=8, @score4=8,
@score5=10, @myAvg = @AvgScore OUTPUT
SELECT '"The Average Score is: ',@AvgScore

Go

16

Pass/receive values for/from parameters

[0 RETURN

CREATE PROC MyReturn

@t1l smallint, @t2 smallint, @retval smallint
AS SELECT @retval = @tl + @t2

RETURN @retval

[1 Run:

DECLARE @myReturnValue smallint
EXEC @myReturnValue = MyReturn 9, 9, O
SELECT 'The return value is: ',@myReturnValue

17

WITH RECOMPILE option:

B in the CREATE PROCEDURE statement: The
whole procedure is recompiled every time it
runs, the procedure can be optimized for new
parameters.

B in the EXEC PROCEDURE statement: Compile
the stored procedure for that execution and

store the new plan in the procedure buffer for
later EXEC PROCEDURE commands.

If @ SP is created with the ENCRYPTION
option => its contents cannot be viewed

18

An example

USE CompanySupplyProduct

GO

IF EXISTS(SELECT name FROM sysobjects
WHERE name='pCompany' AND type='P')
DROP PROCEDURE pCompany

GO

CREATE PROCEDURE pCompany WITH ENCRYPTION
AS SELECT Name, NumberofEmployee
FROM Company

ORDER BY Name DESC

GO

EXEC sp_helptext pCompany;

19

2. Trigger

2.1. Introduction
2.2. Syntax

20

2.1 Introduction

[0 A special stored procedure, which is
executed automatically when there are

data-changing events such as Update,
Insert or Delete.

[1 Used to ensure data integrity or to
implement certain business rules.

[0 When to use triggers?

B when other data integrity measures like
Constraint cannot satisfy the application's
requirements

21

2.1 Introduction

B Constraint is a declared data integrity type:
check the data before allowing it to be
entered into the table

B The trigger is of procedural data integrity,
so the Insert, Update, Delete happens and
then activates the trigger.

B Sometimes, due to the need to change
chains, triggers can be used

[0 Characteristics of trigger

B A trigger can do multiple jobs, which can
be triggered by multiple events

22

2.1 Introduction

B Triggers cannot be created on temporary or
system tables

B Triggers can only be triggered automatically
by events and cannot be manually run.

B A trigger can be applied to a view

B When trigger is activated

The newly inserted data will be contained in the
"inserted" table.

Newly deleted data will be stored in the
"deleted” table.

These are two temporary tables that reside in
memory, and only have values inside the
trigger

23

2.2. Syntax

[J You can use T-SQL or Enterprise
Manager to create triggers

[0 The following statements must not be
used in trigger definitions: ALTER
DATABASE, CREATE DATABASE, DISK
INIT, DISK RESIZE, DROP DATABASE,
LOAD DATABASE, LOAD LOG,
RECONFIGURE, RESTORE DATABASE,
RESTORE LOG

24

[0 Temporary tables: deleted and inserted

B referred to as the real table but stored in
internal memory, not on disk.

B \alues in this table are only accessible in
triggers. Once the trigger is completed, the
tables are no longer accessible.

25

Example

1 Create the AddCompany trigger on the

Company table: print a message whenever

data is added to the table

USE CompanySupplyProduct

GO

IF EXISTS(SELECT name FROM sysobjects
WHERE name='AddCompany’' AND Type='TR")
DROP TRIGGER AddCompany

GO

CREATE TRIGGER AddCompany

ON Company

FOR INSERT

AS

PRINT 'The Company table has just been inserted data’
GO

26

Create deleted trigger

Create the table DeletedCompany to store the
deleted item from the Company table

This table should be the same to Company

CREATE TABLE [DeletedCompany] (
[CompanyID] int,

'Name] varchar(40),
'NumberofEmployee] int,
Address] varchar(50),
‘Telephone] char(15),
EstablishmentDay] date,
PRIMARY KEY ([CompanyID])

);

Create deleted trigger

Create deleted trigger on the Company table for
the delete event

CREATE TRIGGER tg_DeleteCompany

ON Company

FOR DELETE

AS

INSERT INTO DeletedCompany SELECT * FROM deleted

28

Create update trigger

CREATE TRIGGER tg_CheckPrice

ON Product

FOR UPDATE

AS

DECLARE @oldprice decimal(10,2), @newprice decimal(10,2)

SELECT @oldprice = Price FROM deleted

PRINT 'Old price ='

PRINT CONVERT(varchar(6), @oldprice)

SELECT @newprice = Price FROM inserted

PRINT 'New price ='

PRINT CONVERT(varchar(6), @newprice)

IF(@newprice > (@oldprice*1.10))

BEGIN
PRINT 'New price increased over 10%, not update'
ROLLBACK

END

ELSE

PRINT 'New price is accepted'

