
1

Stored Procedure & Trigger

NGUYEN HongPhuong
Email: phuongnh@soict.hust.edu.vn
Site: http://users.soict.hust.edu.vn/phuongnh
Face: https://www.facebook.com/phuongnhbk
Hanoi University of Science and Technology

Contents

1. Stored Procedure
1.1. Introduction
1.2. Syntax

2. Trigger
2.1. Introduction
2.2. Syntax

2

1. Stored Procedure

1.1. Introduction
1.2. Syntax

3

1.1. Introduction to stored procedure

 Concepts:
 A stored procedure (SP) is a set of

Structured Query Language (SQL)
statements with an assigned name, which
are stored in a relational database
management system as a group, so it can
be reused and shared by multiple
programs.

 Stored procedures can access or modify
data in a database, but it is not tied to a
specific database or object, which offers a
number of advantages.

4

1.1. Introduction to stored procedure

 Benefits:
 provides an important layer of security

between the user interface and the
database.

 preserves data integrity because
information is entered in a consistent
manner.

 improves productivity because statements
in a stored procedure only must be written
once.

 offer advantages over embedding queries
in a graphical user interface (GUI).

5

1.1. Introduction to stored procedure

 Since stored procedures are modular, it is
easier to troubleshoot when a problem arises
in an application.

 Stored procedures are also tunable, which
eliminates the need to modify the GUI source
code to improve its performance. It's easier to
code stored procedures than to build a query
through a GUI.

 can reduce network traffic between clients and
servers, because the commands are executed
as a single batch of code. This means only the
call to execute the procedure is sent over a
network, instead of every single line of code
being sent individually.

6

1.1. Introduction to stored procedure

 Stored procedures in SQL Server can
accept input parameters and return
multiple values of output parameters;

7

1.1. Introduction to stored procedure

 Stored procedure vs. function
 Stored procedures and functions can be

used to accomplish the same task. Both
can be custom-defined as part of any
application, but functions are designed to
send their output to a query or T-SQL
statement. Stored procedures are designed
to return outputs to the application, while a
user-defined function returns table
variables and cannot change the server
environment or operating system
environment.

8

1.1. Introduction to stored procedure

 There are 3 types:
 System SP: provided by SQL Server, whose

name starts with prefix "sp_", is used to
manage SQL Server and display database
and user-information.

 SP extensions: dynamic link libraries
(DLLs), written in languages like C, C ++,
..., that SQL Server can load and execute.
 External SP: name starts with "xp_"
 User-defined SP

9

1.2. Syntax

 You can use T-SQL, Enterprise Manager
or wizard to create SP.

 Syntax in SQL Server:

10

CREATE PROC[EDURE] procedure_name
{;number}
[{@parameter data_type}[=default |
NULL][VARYING][OUT PUT]]
[WITH {RECOMPILE | ENCRYPTION |
RECOMPILE,ENCRYPTION}]
[FOR REPLICATION]
AS sql_statement

Example

 Run this procedure:
 EXEC pCompany

11

USE CompanySupplyProduct
GO
IF EXISTS(SELECT name FROM sysobjects
WHERE name='pCompany' AND type='P')
DROP PROCEDURE pCompany
GO
CREATE PROCEDURE pCompany
AS SELECT Name, NumberofEmployee
FROM Company
ORDER BY Name DESC
GO

 To see the content of a SP:
 EXEC sp_helptext pCompany

 Drop a SP:
 DROP PROCEDURE procedure_name

12

Creating a group of SP

 To get a list of name and address of the
companies, use the following command:
 EXEC group_sp;3

13

CREATE PROC group_sp
AS SELECT * FROM Company
GO
CREATE PROC group_sp
AS SELECT Name FROM Company
GO
CREATE PROC group_sp
AS SELECT Name, Address FROM Company
GO

Parameters

 @parameter data_type [=default | NULL]
[VARYING] [OUTPUT]

 @parameter: name of parameter inside the
procedure, can declare up to 1024 parameters
inside a SP.

 data_type: any data type defined by the system
or user-defined, except the image data type.

 Default: Specifies the default value for the
parameter.

 VARYING: Applies to the returned recordset.
 OUTPUT: Defines this as a return parameter.

14

An example

 Write a stored procedure that takes 5
parameters as input, calculates the
average, and outputs it:

15

CREATE PROCEDURE scores
@score1 smallint,
@score2 smallint,
@score3 smallint,
@score4 smallint,
@score5 smallint,
@myAvg smallint OUTPUT
AS SELECT @myAvg = (@score1 + @score2 +
@score3 + @score4 + @score5) / 5

Pass/receive values for/from parameters

 Transmitting in the order

16

DECLARE @AvgScore smallint
EXEC scores 10, 9, 8, 8, 10, @AvgScore OUTPUT
SELECT 'The Average Score is: ',@AvgScore
Go

 Transmitting in any order

DECLARE @AvgScore smallint
EXEC scores
@score1=10, @score3=9, @score2=8, @score4=8,
@score5=10, @myAvg = @AvgScore OUTPUT
SELECT 'The Average Score is: ',@AvgScore
Go

Pass/receive values for/from parameters

 RETURN

17

CREATE PROC MyReturn
@t1 smallint, @t2 smallint, @retval smallint
AS SELECT @retval = @t1 + @t2
RETURN @retval

DECLARE @myReturnValue smallint
EXEC @myReturnValue = MyReturn 9, 9, 0
SELECT 'The return value is: ',@myReturnValue

 Run:

 WITH RECOMPILE option:
 in the CREATE PROCEDURE statement: The

whole procedure is recompiled every time it
runs, the procedure can be optimized for new
parameters.

 in the EXEC PROCEDURE statement: Compile
the stored procedure for that execution and
store the new plan in the procedure buffer for
later EXEC PROCEDURE commands.

 If a SP is created with the ENCRYPTION
option => its contents cannot be viewed

18

An example

19

USE CompanySupplyProduct
GO
IF EXISTS(SELECT name FROM sysobjects
WHERE name='pCompany' AND type='P')
DROP PROCEDURE pCompany
GO
CREATE PROCEDURE pCompany WITH ENCRYPTION
AS SELECT Name, NumberofEmployee
FROM Company
ORDER BY Name DESC
GO

EXEC sp_helptext pCompany;

2. Trigger

2.1. Introduction
2.2. Syntax

20

2.1 Introduction

 A special stored procedure, which is
executed automatically when there are
data-changing events such as Update,
Insert or Delete.

 Used to ensure data integrity or to
implement certain business rules.

 When to use triggers?
 when other data integrity measures like

Constraint cannot satisfy the application's
requirements

21

2.1 Introduction

 Constraint is a declared data integrity type:
check the data before allowing it to be
entered into the table

 The trigger is of procedural data integrity,
so the Insert, Update, Delete happens and
then activates the trigger.

 Sometimes, due to the need to change
chains, triggers can be used

 Characteristics of trigger
 A trigger can do multiple jobs, which can

be triggered by multiple events

22

2.1 Introduction

 Triggers cannot be created on temporary or
system tables

 Triggers can only be triggered automatically
by events and cannot be manually run.

 A trigger can be applied to a view
 When trigger is activated
 The newly inserted data will be contained in the

"inserted" table.
 Newly deleted data will be stored in the

"deleted" table.
 These are two temporary tables that reside in

memory, and only have values inside the
trigger

23

2.2. Syntax

 You can use T-SQL or Enterprise
Manager to create triggers

 The following statements must not be
used in trigger definitions: ALTER
DATABASE, CREATE DATABASE, DISK
INIT, DISK RESIZE, DROP DATABASE,
LOAD DATABASE, LOAD LOG,
RECONFIGURE, RESTORE DATABASE,
RESTORE LOG

24

 Temporary tables: deleted and inserted
 referred to as the real table but stored in

internal memory, not on disk.
 Values in this table are only accessible in

triggers. Once the trigger is completed, the
tables are no longer accessible.

25

Example

 Create the AddCompany trigger on the
Company table: print a message whenever
data is added to the table

26

USE CompanySupplyProduct
GO
IF EXISTS(SELECT name FROM sysobjects
WHERE name='AddCompany' AND Type='TR')
DROP TRIGGER AddCompany
GO
CREATE TRIGGER AddCompany
ON Company
FOR INSERT
AS
PRINT 'The Company table has just been inserted data'
GO

Create deleted trigger

 Create the table DeletedCompany to store the
deleted item from the Company table

 This table should be the same to Company

27

CREATE TABLE [DeletedCompany] (
[CompanyID] int,
[Name] varchar(40),
[NumberofEmployee] int,
[Address] varchar(50),
[Telephone] char(15),
[EstablishmentDay] date,
PRIMARY KEY ([CompanyID])

);

Create deleted trigger

28

 Create deleted trigger on the Company table for
the delete event

CREATE TRIGGER tg_DeleteCompany
ON Company
FOR DELETE
AS
INSERT INTO DeletedCompany SELECT * FROM deleted

Create update trigger

29

CREATE TRIGGER tg_CheckPrice
ON Product
FOR UPDATE
AS
DECLARE @oldprice decimal(10,2), @newprice decimal(10,2)
SELECT @oldprice = Price FROM deleted
PRINT 'Old price ='
PRINT CONVERT(varchar(6), @oldprice)
SELECT @newprice = Price FROM inserted
PRINT 'New price ='
PRINT CONVERT(varchar(6), @newprice)
IF(@newprice > (@oldprice*1.10))
BEGIN

PRINT 'New price increased over 10%, not update'
ROLLBACK

END
ELSE
PRINT 'New price is accepted'

30

