
1

Transaction

NGUYEN HongPhuong
Email: phuongnh@soict.hust.edu.vn
Site: http://users.hust.edu.vn/phuongnh
Face: https://www.facebook.com/phuongnhbk
Hanoi University of Science and Technology

Contents

 Introduction
 Properties of a transaction
 Transaction states
 Processing a transaction

 Transactions, read and write
operation, DBMS buffer

 Some examples
 Transaction best practices

2

Introduction

 Transactions in SQL are a group of
SQL statements. If a transaction is
made successfully, all data changes
made in the transaction are saved to
the database. If a transaction fails and
is rolled back, all data modifications will
be deleted (data is restored to the state
before the transaction was executed).

3

Properties of a transaction

 The transaction has 4 standard properties,
referenced by ACID

4

Properties of a transaction (2)
 Atomicity: ensures that all operations within the

work unit are completed successfully. Otherwise,
the transaction is aborted at the point of failure
and all the previous operations are rolled back to
their former state.

 Consistency: ensures that the database properly
changes states upon a successfully committed
transaction.

 Isolation: enables transactions to operate
independently of and transparent to each other.

 Durability: ensures that the result or effect of a
committed transaction persists in case of a
system failure.

5

Transaction states

 A transaction is an atomic unit of work
that is either completed in its entirety
or not done at all.

 For recovery purposes, the system
needs to keep track of when the
transaction starts, terminates, and
commits or aborts.

6

Transaction states (2)

7

A state transition diagram

Transaction states (3)

 The states of the transaction can be
summarized as follows:
 The running transaction is referred to as

the Active transaction
 The transaction that completes its

execution successfully without any error is
referred to as a Committed transaction

 The transaction that does not complete it is
execution successfully is referred to as an
Aborted transaction

8

Transaction states (4)

 The transaction that is not fully committed
yet is referred to as a Partially
Committed transaction

 If the transaction does not complete its
execution, it is referred to as a Failed
transaction, that is Aborted without being
committed

 If the Partially Committed transaction
completes its execution successfully, it will
be Committed, otherwise it will be Failed
then Aborted

9

Processing a transaction

 The following commands are used to
process transactions.
 COMMIT: to save the changes.
 ROLLBACK: to return to the previous state

before changing.
 SAVEPOINT: create points within the

transaction group to ROLLBACK, i.e. to return
to that status point.

 SET TRANSACTION: give a name to a
transaction.

 These commands are only used with DML:
INSERT, UPDATE and DELETE. 10

COMMIT command

 Used to save the changes invoked by a
transaction to the database.

 Stores all transactions in the Database
since the last COMMIT or ROLLBACK
command.

 The basic syntax of a COMMIT
command is as follows:

11

COMMIT;

ROLLBACK command

 Used to return transactions to a state
before changes have not been saved to
the database.

 Can only be used to undo transactions
from the last COMMIT or ROLLBACK
command.

 The basic syntax:

12

ROLLBACK;
ROLLBACK TO SavePointName;
(hoặc ROLLBACK TRANSACTION SavePointName

SAVEPOINT

 A SAVEPOINT is a point in a transaction
when you can undo the transaction to a
specific point without having to roll it
back to the first state before that
change.

 The basic syntax of the SAVEPOINT is
as follows:

13

SAVEPOINT SAVEPOINT_NAME;
(hoặc SAVE TRANSACTION SAVEPOINT_NAME)

RELEASE SAVEPOINT command

 Used to delete a SAVEPOINT that you
have created.

 The basic syntax

 Once a SAVEPOINT has been deleted,
you can no longer use the ROLLBACK
command to undo the transaction to
that SAVEPOINT.

14

RELEASE SAVEPOINT SAVEPOINT_NAME;

SET TRANSACTION command

 Can be used to initiate a Database
Transaction. This command is used to
characterize the transaction.

 For example, you can specify a
transaction as read only or read write.

 The basic syntax

15

SET TRANSACTION [READ WRITE | READ ONLY];

Transactions, read and write operation,
DBMS buffer

 The database operations that form a
transaction can either be embedded within
an application program or they can be
specified interactively via a high-level
query language such as SQL.

 One way of specifying the transaction
boundaries is by specifying explicit begin
transaction and end transaction
statements in an application program

16

 A read-only transaction
 do not update the database but only retrieve

data

 To simplify, the basic database access
operations that a transaction can include
are as follows:
 read_item(X): Reads a database item named

X into a program variable also named X.
 write_item(X): Writes the value of program

variable X into the database item named X

17

 The basic unit of data transfer from disk to
main memory is one block

 Executing a read_item(X) command
includes the following steps:
 Find the address of the disk block that

contains item X
 Copy that disk block into a buffer in main

memory (if that disk block is not already in
some main memory buffer)

 Copy item X from the buffer to the program
variable named X

18

 Executing a write_item(X) command includes the
following steps:
 Find the address of the disk block that contains item X.
 Copy that disk block into a buffer in main memory (if

that disk block is not already in some main memory
buffer).

 Copy item X from the program variable named X into its
correct location in the buffer.

 Store the updated block from the buffer back to disk
(either immediately or at some later point in time).

19

 A transaction includes read_item and
write_item operations to access and
update the database.

 The read-set of a transaction is the set
of all items that the transaction reads

 The write-set is the set of all items that
the transaction writes.

20

21

read_item (X);
X:=X-N;
write_item (X);
read_item (Y);
Y:=Y+N;
write_item (Y);

read_item (X);
X:=X+M;
write_item (X);

T2T1

Why Concurrency Control Is Needed

 Problem
 The Lost Update
 The Temporary Update (Dirty Read)
 The Incorrect Summary
 The Unrepeatable Read

22

The Lost Update Problem

 Occurs when two transactions that access the
same database items have their operations
interleaved in a way that makes the value of
some database items incorrect.

23

read_item (X);
X:=X-N;

write_item (X);
read_item (Y);

Y:=Y+N;
write_item (Y);

read_item (X);
X:=X+M;

write_item (X);

T2T1

Time

The Temporary Update Problem

 Occurs when one transaction updates a
database item and then the transaction fails for
some reason.

 The updated item is accessed by another
transaction before it is changed back to its
original value.

24

read_item (X);
X:=X-N;
write_item (X);

read_item (Y);

read_item (X);
X:=X+M;
write_item (X);

T2T1

Time

Transaction T1 fails
and must change
the value of X back
to its old value;
meanwhile T2 has
read the
“temporary”
incorrect value of X.

The Incorrect Summary Problem

 If one transaction is
calculating an
aggregate summary
function on a number
of records while other
transactions are
updating some of
these records, the
aggregate function
may calculate some
values before they
are updated and
others after they are
updated

25

read_item(X);
X:=X-N;
write_item(X);

read_item(Y);
Y:=Y+N;
write_item(Y);

sum:=0;
read_item(A);
sum:=sum+A;

read_item(X);
sum:=sum+X;
read_item(Y);
sum:=sum+Y;

T1 T3

T3 reads X after N is subtracted
and reads Y before N is added

Time

The Unrepeatable Read Problem

 A transaction T reads an item twice and
the item is changed by another
transaction T' between the two reads

 Hence, T receives different values for
its two reads of the same item.

26

Why Recovery Is Needed

 The DBMS must not permit some operations of a
transaction T to be applied to the database while other
operations of T are not. This may happen if a transaction
fails after executing some of its operations but before
executing all of them.

 There are several possible reasons for a transaction to fail
in the middle of execution:
 A computer failure (system crash)
 A transaction or system error
 Local errors or exception conditions detected by the

transaction
 Concurrency control enforcement
 Disk failure
 Physical problems and catastrophes

27

Some examples

 Using an explicit transaction

28

CREATE TABLE ValueTable (id int);
INSERT INTO ValueTable VALUES(1);
INSERT INTO ValueTable VALUES(2);

BEGIN TRANSACTION;
DELETE FROM ValueTable

WHERE id = 2;
COMMIT;

 Rolling back a transaction
BEGIN TRANSACTION;
INSERT INTO ValueTable VALUES(3);
INSERT INTO ValueTable VALUES(4);
ROLLBACK;

Some examples (2)

 Naming a transaction

29

DECLARE @TranName VARCHAR(20);
SELECT @TranName = 'MyTransaction';
BEGIN TRANSACTION @TranName;
DELETE FROM ValueTable WHERE id = 1;
COMMIT TRANSACTION @TranName;

Some examples (3)

 Marking a transaction

30

BEGIN TRANSACTION Del
WITH MARK N'Deleting a row';
DELETE FROM ValueTable WHERE id = 1;
COMMIT TRANSACTION Del;

Some examples (4)

31

BEGIN TRANSACTION;
INSERT INTO ValueTable VALUES(3);
INSERT INTO ValueTable VALUES(4);
SAVE TRANSACTION sp;
INSERT INTO ValueTable VALUES(5);
INSERT INTO ValueTable VALUES(6);
ROLLBACK TRANSACTION sp;

CREATE PROCEDURE pValueTable
AS
BEGIN TRANSACTION;
INSERT INTO ValueTable VALUES(3);
INSERT INTO ValueTable VALUES(4);
SAVE TRANSACTION sp;
INSERT INTO ValueTable VALUES(5);
INSERT INTO ValueTable VALUES(6);
ROLLBACK TRANSACTION sp;

Transaction best practices

 Using the SQL Server transaction helps
maintaining the database integrity and
consistency. On the other hand, a badly
written transaction may affect the overall
performance of your system by locking the
database resources for long time. To
overcome this issue, it is better to
consider the following points when writing
a transaction:

32

Transaction best practices (2)

 Narrow the scope of the transaction
 Retrieve the data from the tables before

opening the transaction if possible
 Access the least amount of data inside the

transaction body
 Do not ask for user input inside the body of

the transaction
 Use a suitable mode of transactions
 Use as suitable Isolation Level for the

transaction

33

34

