
1

B-trees

anhtt-fit@mail.hut.edu.vn

B tree

� A B-Tree of order m (the maximum number of
children for each node) is a tree which
satisfies the following properties :
� Every node has <= m children.

� Every node (except root and leaves) has >= m/2
children.

� The root has at least 2 children.

� All leaves appear in the same level

� A non-leaf node with k children contains k – 1 keys

2

B-Tree

� Generalizes 2-3-4 trees by allowing up to M links per
node.

� Main application: file systems.

� Reading a page into memory from disk is expensive.

� Accessing info on a page in memory is free.

� Goal: minimize # page accesses.

� Node size M = page size.

� Space-time tradeoff.

� M large ! only a few levels in tree.

� M small ! less wasted space.

� Number of page accesses is logMN per op.

� Typical M = 1000, N < 1 trillion.

Example

� TELSTRA: customer billing database with 51
billion rows, 4.2 terabytes of data.

� Databases cannot be maintained entirely in
memory, b-trees are often used to index the
data and to provide fast access.

3

Search

B-Tree in the wild

� Red-black trees: widely used as system symbol tables
� Java: java.util.TreeMap, java.util.TreeSet.
� C++ STL: map, multimap, multiset.
� Linux kernel: linux/rbtree.h.

� B-Trees: widely used for file systems and databases
� Windows: HPFS.
� Mac: HFS, HFS+.
� Linux: ReiserFS, XFS, Ext3FS, JFS.
� Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL

� All nodes in B-Tree are assumed to be stored in
secondary storage (disk) rather than primary storage
(memory),

� There basic operations for accessing a page: Disk-
Read(), Disk-Write(), Allocate-Node()

4

B-Tree Library

� Software and documentation is accessed at
http://www.hydrus.org.uk/doc/bt/html/index.ht
ml

Notes

� Initiate the library

#include "btree.h“

int btinit(void);

� The B Tree is stored in a UNIX disk file. The
file can contain many B Trees, each of which
is referred to by a name assigned by the user
(or application).

5

API

� Creating a B Tree File

BTA* btcrt(char* fid, int nkeys, int shared);

� Opening a B Tree File

BTA* btopn(char* fid, int mode, int shared);

� Closing a B Tree File

int btcls(BTA* btact);

� BTA : BT activation context

API (cont.)

� Inserting a key and data

int btins(BTA* btact, char* key, char* data, int dsize);

� Updating data for an existing key

int btupd(BTA* btact, char* key, char* data, int dsize);

� Locating data for an existing key

int btsel(BTA* btact, char* key, char* data, int dsize, int*
rsize);

� Deleting a key and associated data

int btdel(BTA* btact, char* key);

� Locating data for the next key in sequence

int btseln(BTA* btact, char* key, char* data, int dsize, int*
rsize);

6

Building and installing the BT Library

� Unpack the tar file into a convenient directory.

$cd <bt library>

$make clean

$make

� Make built an UNIX static library libbt.a, a BT
test harness bt, and a utility, kcp, which
performs intelligent copies of BT index files.

Quiz 1

� Install and compile BT Library in your machine

� Run BT test harness to verify if successful
installed

� See documentation at

http://www.hydrus.org.uk/doc/bt/html/ch05.htm

7

Quiz 2

� Use the BT library to write a phone book
program that manipulates data on the
secondary disk.

Another library for B-Tree

� Download at

http://www.mycplus.com/utilitiesdetail.asp?iPro=
10

� This library allow specifying different
comparison functions for keys.

8

Mini project 1

� Make a program to manage a computer dictionary

� Add/Search/Delete a word (using B-Tree)

� Auto complete search. Ex. When we enter “comput” and
<tab>, the word “computer” should be auto completed (like
Shell)

� Suggestion search => Use soundex library

� Build two programs using the two BT library
respectively.

� Test the performance of the two programs with a dictionary of
millions words (the words can be randomly created)

� Test for the two basic operations: search and insert

� Project in group of 3-4 persons

