
1

Undirected graphs

anhtt-fit@mail.hut.edu.vn

dungct@it-hut.edu.vn

Undirected graphs

� A graph G=(V, E) where V is a set of
vertices connected pairwise by edges E.

� Why study graph algorithms?
� Interesting and broadly useful abstraction.

� Challenging branch of computer science
and discrete math.

� Hundreds of graph algorithms known.

� Thousands of practical applications.
� Communication, circuits, transportation,

scheduling, software systems, internet, games,
social network, neural networks, …

2

Graph terminology

Some graph-processing problems

� Path: Is there a path between s to t?

� Shortest path: What is the shortest path between s
and t?

� Cycle: Is there a cycle in the graph?

� Euler tour: Is there a cycle that uses each edge
exactly once?

� Hamilton tour: Is there a cycle that uses each vertex
exactly once?

� Connectivity: Is there a way to connect all of the
vertices?

� MST: What is the best way to connect all of the
vertices?

� Biconnectivity: Is there a vertex whose removal
disconnects the graph?

3

Graph representation (1)

� Maintain a list of the edges

� Not suitable for searching

Edge List Structure

� Edge sequence
� sequence of edge objects

� Edge object
� element

� origin vertex object

� destination vertex object

� reference to position in edge
sequence

� Vertex sequence
� sequence of vertex objects

� Vertex object
� – element

� – reference to position in vertex
sequence

4

Graph representation (2)

� Maintain an adjacency matrix.

� Suitable for random accesses to the edges

A graph data structure

� Use a dynamic array to represent a graph as the
following

typedef struct {

int * matrix;

int sizemax;

} Graph;

� Define the following API

Graph createGraph(int sizemax);

void setEdge(Graph* graph, int v1, int v2);

int connected(Graph* graph, int v1, int v2);

int getConnectedVertices(Graph* graph, int vertex, int[]
output); // return the number of connected vertices.

5

How to use the API?

int i, n, output[100];

Graph g = createGraph(100);

addEdge(g, 0, 1);

addEdge(g, 0, 2);

addEdge(g, 1, 2);

addEdge(g, 1, 3);

n = getAdjacentVertices (g, 1, output);

if (n==0) printf("No adjacent vertices of node 1\n");

else {

printf("Adjacent vertices of node 1:");

for (i=0; i<n; i++) printf("%5d", output[i]);

}

Quiz 1

� Write the implementation for the API defined in
the previous slide

� Use the example to test your API

6

Quiz 2

� In order to describe the metro lines of a city, we can store the
data in a file as the following.

[STATIONS]

S1=Name of station 1

S2=Name of station 2

…

[LINES]

M1=S1 S2 S4 S3 S7

M2=S3 S5 S6 S8 S9

…

� Make a program to read such a file and establish the network of
metro stations in the memory using a two-dimensional array.

� Write a function to find all the stations directly connected to a
station given by its name.

Graph representation (3)

� Maintain an adjacency list.

7

Adjacency List Representation

� A graph may also be represented by an
adjacency list structure:

Array of linked lists, where list nodes store node labels for
neighbors.

3

2

0

1

4

5

Implementation

� The red black tree can be used to store such a
graph where each node in the tree is a vertex
and its value is a set of connected vertices.

� The set of connected vertices is stored in a red
black tree it self.

8

Quiz 2

� Reuse the libfdr library to implement an API for

manipulating the graph as the following

typedef JRB Graph;

Graph createGraph();

void setEdge(Graph* graph, int v1, int v2);

int connected(Graph* graph, int v1, int v2);

void forEachConnectedVertex(Graph* graph, int vertex, void

(*func)(int, int));

// the last one is a navigation function that iterates over all

connected vertices of a given to do something. func is a

pointer to the function that process on the connected vertices.

� Rewrite the metro network program using this new API

Comparison

� Adjacency List is usually preferred, because it
provides a compact way to represent sparse
graphs – those for which |E| is much less than

|V|2

� Adjacency Matrix may be preferred when the
graph is dense, or when we need to be able to
tell quickly if their is an edge connecting two
given vertices

9

Quiz 3

� Rewrite the API defined for graphs using the
libfdr library as the following

#include "jrb.h"

typedef JRB Graph;

Graph createGraph();

void addEdge(Graph graph, int v1, int v2);

int adjacent(Graph graph, int v1, int v2);

int getAdjacentVertices (Graph graph, int v, int*
output);

void dropGraph(Graph graph);

Instructions (1)

� To create a graph

Simply call make_jrb()

� To add a new edge (v1, v2) to graph g

tree = make_jrb();

jrb_insert_int(g, v1, new_jval_v(tree));

jrb_insert_int(tree, v2, new_jval_i(1));

� If the node v1 is already allocated in the graph

node = jrb_find_int(g, v1);

tree = (JRB) jval_v(node->val);

jrb_insert_int(tree, v2, new_jval_i(1));

10

Instructions (2)

� To get adjacent vertices of v in graph g

node = jrb_find_int(g, v);

tree = (JRB) jval_v(node->val);

total = 0;

jrb_traverse(node, tree)

output[total++] = jval_i(node->key);

� To delete/free a graph

jrb_traverse(node, graph)

jrb_free_tree(jval_v(node->val));

Solution

� graph_jrb.c

11

Homework

� Redo the quiz 2 using the Graph library you
have created in quiz 3

