Graph traversal

anhtt-fit@mail.hut.edu.vn

\ J

Graph Traversal

e We need also algorithm to traverse a graph
like for a tree

e Graph traversal may start at an arbitrary vertex.
(Tree traversal generally starts at root vertex)

e Two difficulties in graph traversal, but not in
tree traversal:

The graph may contain cycles;
The graph may not be connected.
e There are two important traversal methods:

Breadth-first traversal, based on breadth-
first search (BFS).

Depth-first traversal, based on depth-first
\ search (DFS). J

Breadth-First Search Traversal

Breadth-first traversal of a graph:
Is roughly analogous to level-by-level traversal of an
ordered tree
Start the traversal from an arbitrary vertex;
Visit all of its adjacent vertices;

Then, visit all unvisited adjacent vertices of those visited
vertices in last level;

Continue this process, until all vertices have been visited.

source 9 @

@9 & /

source

Breadth-First Traversal

The pseudocode of breadth-first traversal algorithm:

BFS (G, s)
for each vertex u in V
do visited[u] = false
Report (s)
visited[s] = true

initialize an empty Q
Enqueue (Q, s)

While Q is not empty
do u = Dequeue (Q)
for each v in Adj[u]
do if visited[v] = false
then Report (v)
visited[v] = true

\ Enqueue (Q, v) /

An Example

Breadth-First Search Traversal

Example of breadth-first traversal
Visit the first vertex (in this example 0)
Visit its adjacent nodes in Adjj0] ;75216
Visit adjacent unvisited nodes of the those visited in last level
Visit adjacent nodes of 7 in Adj[7] : 4
Visit adjacent nodes of 5 in Adj[5] : 3
Visit adjacent nodes of 2 in Adj[2] : none
Visit adjacent nodes of 1 in Adj[1] : none
Visit adjacent nodes of 6 in Adj[6] : none
Visit adjacent unvisited nodes of the those visited in last level
Visit adjacent nodes of 4 in Adj[4] : none
Visit adjacent nodes of 3 in Adj[3] : none
Done

_

Breadth-First Traversal

Breadth-first traversal of a graph:
Implemented with queue;
Visit an adjacent unvisited vertex to the current vertex,
mark it, insert the vertex into the queue, visit next.
If no more adjacent vertex to visit, remove a vertex from
the queue (if possible) and make it the current vertex.
If the queue is empty and there is no vertex to insert into
the queue, then the traversal process finishes.

_ /

e Let implement a graph using the red black tree
as in the previous lab.
typedef JRB Graph;
Graph createGraph();
void setEdge(Graph* graph, int v1, int v2);
int connected(Graph* graph, int v1, int v2);

e Write a function to traverse the graph using
BFS algorithm
void BFS(Graph* graph, int s, int (*func)(int));
// func is a pointer to the function that process on the

\ visited vertices /

Unweighted Shortest Path Problem

e Unweighted shortest-path problem: Given as
input an unweighted graph, G = (V,E), and a
distinguished vertex, s, find the shortest
unweighted path from s to every other vertex
in G.

e After running BFS algorithm with s as starting

vertex, the shortest path length from stoiis
given by d[i].

. /

Pseudo Algorithm

BFS (G, s)

for each vertex u in V
do
visited[u] = false; d[u]l=
Report (s)
visited[s] = true

initialize an empty Q
Enqueue (Q,s); d[s]=0;

While Q is not empty
do u = Dequeue (Q)
for each v in Adj[u]

do if visited[v] = false
then Report (v)
d[v]=d[u]+1;

visited[v] = true
\ Enqueue (Q, v) J

Q)

e Continue with the exercise about Metro
stations.

e Write a function that print out a unweighted
shortest path between two given vertices and
return its length.

int UShortestPath(Graph* graph, int v1, int v2);

. /

