Weighted graph

anhtt-fit@mail.hut.edu.vn

\ J

Weighted Graph

e We can add attributes to edges. We call the
attributes weights.

For example if we are using the graph as a map
where the vertices are the cites and the edges are
highways between the cities.

Then if we want the shortest travel distance
between cities an appropriate weight would be the
road mileage.

If we are concerned with the dollar cost of a trip and
went the cheapest trip then an appropriate weight
for the edges would be the cost to travel between

\ the cities. J

Shortest Path

e Digraph G = (V,E) with weight function W: E —
R (assigning real values to edges)

e Weightofpathp=v, > v, > ... 5>y is
k=1
w(p) =Y w(v,,v,,,)
i=1

e Shortest path = a path of the minimum weight

e Applications
static/dynamic network routing
robot motion planning

\ map/route generation in traffic /

Shortest-Path Problems

e Shortest-Path problems
Single-source (single-destination). Find a
shortest path from a given source (vertex s) to each
of the vertices.
Single-pair. Given two vertices, find a shortest path
between them. Solution to single-source problem
solves this problem efficiently, too.
All-pairs. Find shortest-paths for every pair of
vertices. Dynamic programming algorithm.

_ /

Negative Weights and Cycles?

e Negative edges are OK, as long as there are
no negative weight cycles (otherwise paths
with arbitrary small “lengths” would be
possible)

e Shortest-paths can have no cycles (otherwise
we could improve them by removing cycles)

Any shortest-path in graph G can be no longer than
n —1 edges, where n is the number of vertices

_ /

Relaxation

e For each vertex vin the graph, we maintain
v.d(), the estimate of the shortest path from s,
initialized to « at the start

e Relaxing an edge (u,v) means testing whether
we can improve the shortest path to v found so
far by going through u

if v.d() > u.d()+G.w(u,v)
l Relax(u,v) lRelaX(u,V) then
M e e v.setd(u.d()+G.w(u,v))
2 2 v.setparent (u)

K v u v /

Dijkstra's Algorithm

e Non-negative edge weights

e Like breadth-first search (if all weights = 1, one
can simply use BFS)

e Use Q, a priority queue ADT keyed by v.d()
(BFS used FIFO queue, here we use a PQ,
which is re-organized whenever some d
decreases)

e Basic idea

maintain a set S of solved vertices

at each step select "closest" vertex u, add it to S,
and relax all edges from u

oo

e demo-dijkstra.ppt

Dijkstra’s Pseudo Code

e Input: Graph G, start vertex s

Dijkstra (G, s)

01 for each vertex u € G.V()

02 u.setd (o)

03 u.setparent (NIL)

04 s.setd(0)

05 // Set S is used to explain the algorithm

06 Q.init(G.V()) // Q is a priority queue ADT

07 while not Q.isEmpty()

08 u ¢« Q.extractMin()

09

10 for each v € u.adjacent () do relaxing
11 Relax(u, v, G)

12 Q.modifyKey (v) edges

_)

Implementation

e Modify the graph API to support weighted edgs as the
following

#define INFINITIVE_VALUE 10000000
typedef struct {
JRB edges;
JRB vertices;
} Graph;
void addEdge(Graph graph, int v1, int v2, double weight);
double getEdgeValue(Graph graph, int v1, int v2); // return
INFINITIVE_VALUE if no edge between v1 and v2

int indegree(Graph graph, int v, int* output);

int outdegree(Graph graph, int v, int* output);

double shortedPath(Graph graph, int s, int t, int* path,
int*length); // return the total weight of the path and the path is

given via path and its length. Return INFINITIVE_VALUE if no
\ path is found J

e Write the implementation of the weighted graph API.
Test the API using the following example

Graph g = createGraph();
// add the vertices and the edges of the graph here
int s, t, length, path[1000];
double weight = shortedPath(g, s, t, path, &length);
if (weight == INFINITIVE_VALUE)
printf(“No path between %d and %d\n”, s, t);
else {
printf(“Path between %d and %d:”, s, t);
for (i=0; i<length; i++) printf(“%4d”, path[i]);
printf(“Total weight: %f”, weight);

_ /

e The objective of this exercise is to simulate a bus map
in Hanoi.

e Firstly, you have to collect data about Hanoi’s bus map
in the form of a graph where
Each vertex is a bus station corresponding to a place in Hanoi
The edges connect the bus stations via the bus lines.

E.g., There are 16 stations connected by bus No 1A: “Yén
Phu - Hang Pau - Hang C6t - Hang Ga - Hang Diéu - Budng
Thanh - Pha Doan - Triéu Québc Dat - Hai Ba Trung - Lé Duan
- Kham Thién - Nguyén Luwong Béng- Tay Son - Nguyén Tréi
- Tran Phu (Ha Béng) - Bén xe Ha Bong”

Cf,,
http://www.hanoibus.com.vn/InfobusVN/hanoibus/index.asp?p

\ Page=lotrinh.htm

Mini project Il (cont.)

Each edge in the graph marked with the bus lines
which traverse from one to the other. E.g., The
edge “Yén Phu - Tran Nhat Duat” is marked with
4A, 10A.

e Organize and store the data in a file to be loaded in
the program when running

e Rewrite the graph API to be able to store the bus map

in memory

e Develop a functionality to find the to
move frorr] a place to another. E.g., From “Yén Phy” to
“Ngb Quyen”.

_ /

