
1

Weighted graph

anhtt-fit@mail.hut.edu.vn

Weighted Graph

� We can add attributes to edges. We call the
attributes weights.

� For example if we are using the graph as a map

where the vertices are the cites and the edges are

highways between the cities.

� Then if we want the shortest travel distance

between cities an appropriate weight would be the

road mileage.

� If we are concerned with the dollar cost of a trip and

went the cheapest trip then an appropriate weight
for the edges would be the cost to travel between

the cities.

2

Shortest Path

� Digraph G = (V,E) with weight function W: E →

R (assigning real values to edges)

� Weight of path p = v1 → v2 → … → vk is

� Shortest path = a path of the minimum weight

� Applications

� static/dynamic network routing

� robot motion planning

� map/route generation in traffic

1

1

1

() (,)
k

i i

i

w p w v v
−

+

=

=∑

Shortest-Path Problems

� Shortest-Path problems

� Single-source (single-destination). Find a

shortest path from a given source (vertex s) to each

of the vertices.

� Single-pair. Given two vertices, find a shortest path

between them. Solution to single-source problem

solves this problem efficiently, too.

� All-pairs. Find shortest-paths for every pair of
vertices. Dynamic programming algorithm.

3

Negative Weights and Cycles?

� Negative edges are OK, as long as there are
no negative weight cycles (otherwise paths
with arbitrary small “lengths” would be

possible)

� Shortest-paths can have no cycles (otherwise
we could improve them by removing cycles)

� Any shortest-path in graph G can be no longer than
n – 1 edges, where n is the number of vertices

Relaxation

� For each vertex v in the graph, we maintain
v.d(), the estimate of the shortest path from s,

initialized to ∞ at the start

� Relaxing an edge (u,v) means testing whether
we can improve the shortest path to v found so
far by going through u

5

u v

vu

2

2

9

5 7

Relax(u,v)

5

u v

vu

2

2

6

5 6

Relax(u,v)

Relax (u,v,G)

if v.d() > u.d()+G.w(u,v)

then

v.setd(u.d()+G.w(u,v))

v.setparent(u)

4

Dijkstra's Algorithm

� Non-negative edge weights

� Like breadth-first search (if all weights = 1, one

can simply use BFS)

� Use Q, a priority queue ADT keyed by v.d()
(BFS used FIFO queue, here we use a PQ,
which is re-organized whenever some d
decreases)

� Basic idea

� maintain a set S of solved vertices

� at each step select "closest" vertex u, add it to S,

and relax all edges from u

Demo

� demo-dijkstra.ppt

5

Dijkstra’s Pseudo Code

� Input: Graph G, start vertex s

relaxing

edges

Dijkstra(G,s)

01 for each vertex u ∈ G.V()

02 u.setd(∞)

03 u.setparent(NIL)

04 s.setd(0)

05 // Set S is used to explain the algorithm

06 Q.init(G.V()) // Q is a priority queue ADT

07 while not Q.isEmpty()

08 u ← Q.extractMin()

09 S ← S ∪ {u}

10 for each v ∈ u.adjacent() do

11 Relax(u, v, G)

12 Q.modifyKey(v)

Implementation

� Modify the graph API to support weighted edgs as the
following

#define INFINITIVE_VALUE 10000000

typedef struct {

JRB edges;

JRB vertices;

} Graph;

void addEdge(Graph graph, int v1, int v2, double weight);

double getEdgeValue(Graph graph, int v1, int v2); // return
INFINITIVE_VALUE if no edge between v1 and v2

int indegree(Graph graph, int v, int* output);

int outdegree(Graph graph, int v, int* output);

double shortedPath(Graph graph, int s, int t, int* path,
int*length); // return the total weight of the path and the path is
given via path and its length. Return INFINITIVE_VALUE if no
path is found

6

Quiz

� Write the implementation of the weighted graph API.
Test the API using the following example

Graph g = createGraph();

// add the vertices and the edges of the graph here

int s, t, length, path[1000];

double weight = shortedPath(g, s, t, path, &length);

if (weight == INFINITIVE_VALUE)

printf(“No path between %d and %d\n”, s, t);

else {

printf(“Path between %d and %d:”, s, t);

for (i=0; i<length; i++) printf(“%4d”, path[i]);

printf(“Total weight: %f”, weight);

}

Quiz 2

� The objective of this exercise is to simulate a bus map

in Hanoi.

� Firstly, you have to collect data about Hanoi’s bus map

in the form of a graph where

� Each vertex is a bus station corresponding to a place in Hanoi

� The edges connect the bus stations via the bus lines.

� E.g., There are 16 stations connected by bus No 1A: “Yên

Phụ - Hàng Ðậu - Hàng Cót - Hàng Gà - Hàng Ðiếu - Đường

Thành - Phủ Doãn - Triệu Quốc Đạt - Hai Bà Trưng - Lê Duẩn

- Khâm Thiên - Nguyễn Lương Bằng- Tây Sơn - Nguyễn Trãi

- Trần Phú (Hà Đông) - Bến xe Hà Ðông”

� Cf.,

http://www.hanoibus.com.vn/InfobusVN/hanoibus/index.asp?p

Page=lotrinh.htm

7

Mini project II (cont.)

� Each edge in the graph marked with the bus lines

which traverse from one to the other. E.g., The
edge “Yên Phụ - Trần Nhật Duật” is marked with

4A, 10A.

� Organize and store the data in a file to be loaded in

the program when running

� Rewrite the graph API to be able to store the bus map
in memory

� Develop a functionality to find the “shortest path” to

move from a place to another. E.g., From “Yên Phụ” to

“Ngô Quyền”.

