
Data compression

anhtt-fit@mail.hut.edu.vn

dungct@it-hut.edu.vn

Data Compression

� Data in memory have used fixed length for
representation

� For data transfer (in particular), this method is
inefficient.

� For speed and storage efficiencies, data symbols
should use the minimum number of bits possible for
representation.

� Methods Used For Compression:
� Encode high probability symbols with fewer bits

� Shannon-Fano, Huffman, UNIX compact

� Encode sequences of symbols with location of sequence in a
dictionary

� PKZIP, ARC, GIF, UNIX compress, V.42bis

� Lossy compression

� JPEG and MPEG

Variable Length Bit Codings

� Suppose ‘A’ appears 50 times in text,

but ‘B’ appears only 10 times

� ASCII coding assigns 8 bits per character, so

total bits for ‘A’ and ‘B’ is 60 * 8 = 480

� If ‘A’ gets a 4-bit code and ‘B’ gets a 12-bit

code, total is 50 * 4 + 10 * 12 = 320

Compression rules:

� Use minimum number of bits

� No code is the prefix of another code

� Enables left-to-right, unambiguous decoding

Variable Length Bit Codings

� No code is a prefix of another

� For example, can’t have ‘A’ map to 10 and ‘B’ map

to 100, because 10 is a prefix (the start of) 100.

� Enables left-to-right, unambiguous decoding

� That is, if you see 10, you know it’s ‘A’, not the start

of another character.

Variable-length encoding

� Use different number of bits to encode

different characters.

� Ex. Morse code.

� Issue: ambiguity.

� • • • - - - • • •

� SOS ?

� IAMIE ?

� EEWNI ?

� V7O ?

Huffman code

� Constructed by using a code tree, but starting at the
leaves

� A compact code constructed using the binary
Huffman code construction method

Huffman code Algorithm

① Make a leaf node for each code symbol
Add the generation probability of each symbol to the leaf
node

② Take the two leaf nodes with the smallest probability
and connect them into a new node

Add 1 or 0 to each of the two branches
The probability of the new node is the sum of the
probabilities of the two connecting nodes

③ If there is only one node left, the code construction is
completed. If not, go back to (2)

Demo

� 65demo-huffman.ppt

Compress a text

� Consider the following short text:

 Eerie eyes seen near lake.

� Count up the occurrences of all characters in

the text

Char Freq. Char Freq. Char Freq.
E 1 y 1 k1
e 8 s 2 .1
r 2 n 2
i 1 a 2
space 4 l 1

Building a Tree

� The queue after inserting all nodes

� Null Pointers are not shown

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

s

p

4

e

8

Building a Tree

� While priority queue contains two or more

nodes

� Create new node

� Dequeue node and make it left subtree

� Dequeue next node and make it right subtree

� Frequency of new node equals sum of frequency

of left and right children

� Enqueue new node back into queue

Building a Tree

E

1

i

1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

s

p

4

e

8

Building a Tree

E
1

i
1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

Building a Tree

E
1

i
1

y

1

l

1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8
2

Building a Tree

E
1

i
1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8
2

y
1

l
1

2

Building a Tree

E
1

i
1

k

1

.

1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

Building a Tree

E
1

i
1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

Building a Tree

� To continue …

E
1

i
1

r

2

s

2

n

2

a

2

sp

4

e

8

2

y
1

l
1

2

k
1

.
1

2

At the end

E
1

i
1

sp
4

e
8

2

y
1

l
1

2

k
1

.
1

2

r
2

s
2

4

n
2

a
2

4

4
6

8

10
16

26

After

enqueueing

this node

there is only

one node left

in priority

queue.

How to implement ?

� Reuse JRB to represent the tree

� Each new node is created as a JRB node

� The edges are directional from the parents to the

children.

� Two edges are created and marked using label 0 or
1 when a parent node is created.

� Reuse Dllist or JRB to represent the priority

queue

� A queue node contains a key as the frequency of

the related node in the tree

� The queue node’s value is a pointer referencing to

the node in the tree

Quiz 1

� Reuse the graph API defined in previous class

to write a function that builds a Huffman tree

from a string as the following

typedef struct {

Graph graph;

JRB root;

} HuffmanTree;

HuffmanTree makeHuffman (char * buffer, int size);

Huffman code table

� In order to compress the data string, we have to build
a code table from the Huffman tree. The following data

structure is used to represent the code table

typedef struct {

int size;

char bits[2];

} Coding;

Coding huffmanTable[256];

� huffmanTable['A'] give the coding of 'A'. If the coding’s

size = 0, the character 'A' is not present in the text. bits

contains the huffman code (sequence of bits) of the
given character.

Quiz 2

� Write a function to create the Huffman code table from
a Huffman tree
� void createHuffmanTable(HuffmanTree htree, Coding*

htable);

� Write a function to compress a text buffer to a Huffman
sequence.
� void compress(char * buffer, int size, char* huffman, int* nbit);

� The buffer contains size characters. After
compressing, the huffman buffer contains nbit bits for
output.

� In order to write this function, you should create a
function to add a new character into the huffman buffer
as the following
� void addHuffmanChar(char * ch, Coding* htable, char*

huffman, int* nbit);

