Data compression

anhtt-fit@mail.hut.edu.vn
dungct@it-hut.edu.vn

Data Compression

Data in memory have used fixed length for
representation

For data transfer (in particular), this method is
inefficient.

For speed and storage efficiencies, data symbols
should use the minimum number of bits possible for
representation.

Methods Used For Compression:
Encode high probability symbols with fewer bits
e Shannon-Fano, Huffman, UNIX compact

Encode sequences of symbols with location of sequence in a
dictionary
o PKZIP, ARC, GIF, UNIX compress, V.42bis

Lossy compression
o JPEG and MPEG

Variable Length Bit Codings

e Suppose ‘A’ appears 50 times in text,
but ‘B’ appears only 10 times

e ASCII coding assigns 8 bits per character, so
total bits for ‘A’ and ‘B’ is 60 * 8 = 480

e If‘A’ gets a 4-bit code and ‘B’ gets a 12-bit
code, total is 50 * 4 + 10 * 12 = 320

Compression rules:

e Use minimum number of bits

e No code is the prefix of another code

e Enables left-to-right, unambiguous decoding

Variable Length Bit Codings

e No code is a prefix of another

For example, can’'t have ‘A’ map to 10 and ‘B’ map
to 100, because 10 is a prefix (the start of) 100.

e Enables left-to-right, unambiguous decoding

That is, if you see 10, you know it's ‘A’, not the start
of another character.

Variable-length encoding

e Use different number of bits to encode
different characters.

e Ex. Morse code.
e Issue: ambiguity.

SOS ?
IAMIE ?
EEWNI ?
V70 ?

5
%

+ «— prefix of V

«— prefix of I, 5
+ <«— prefixof S

NeHEg<O-HRROTOoOZIORE-TIOTMOOE >

< H B m

Constructed by using a code tree, but starting at the
leaves

A compact code constructed using the binary
Huffman code construction method

Huffman code Algorithm

@ Make a leaf node for each code symbol

. Adg the generation probability of each symbol to the leaf
node

@ Take the two leaf nodes with the smallest probability
and connect them into a new node
+ Add 1 or 0 to each of the two branches
« The probability of the new node is the sum of the
probabilities of the two connecting nodes
@ If there is only one node left, the code construction is
completed. If not, go back to (2)

e 65demo-huffman.ppt

Compress a text

Consider the following short text:
Eerie eyes seen near lake.

Count up the occurrences of all characters in
the text

Char Freq. Char Freq. Char Freq.
k1l
.1

S
n
a
1

Building a Tree

e The queue after inserting all nodes

e Null Pointers are not shown

Building a Tree

e While priority queue contains two or more
nodes

Create new node
Dequeue node and make it left subtree
Dequeue next node and make it right subtree

Frequency of new node equals sum of frequency
of left and right children

Enqueue new node back into queue

Building a Tree

Building a Tree

Building a Tree

Building a Tree

Building a Tree

Building a Tree

Building a Tree

e To continue ...

At the end

After
enqueueing
this node
there is only
one node left
In priority
queue.

How to implement ?

e Reuse JRB to represent the tree
Each new node is created as a JRB node

The edges are directional from the parents to the
children.

Two edges are created and marked using label 0 or
1 when a parent node is created.
e Reuse Dllist or JBRB to represent the priority

queue

A gqueue node contains a key as the frequency of
the related node in the tree

The queue node’s value is a pointer referencing to
the node in the tree

e Reuse the graph API defined in previous class
to write a function that builds a Huffman tree
from a string as the following

typedef struct {
Graph graph;

JRB root;
} HuffmanTree;
HuffmanTree makeHuffman (char * buffer, int size);

Huffman code table

e |n order to compress the data string, we have to build
a code table from the Huffman tree. The following data
structure is used to represent the code table

typedef struct {
int size;
char bits[2];
} Coding;
Coding huffmanTable[256];

e huffmanTable['A"] give the coding of 'A'. If the coding’s
size = 0, the character 'A' is not present in the text. bits
contains the huffman code (sequence of bits) of the
given character.

e Write a function to create the Huffman code table from
a Huffman tree

void createHuffmanTable(HuffmanTree htree, Coding*
htable);

Write a function to compress a text buffer to a Huffman
sequence.
void compress(char * buffer, int size, char® huffman, int* nbit);

The buffer contains size characters. After
compressing, the huffman buffer contains nbit bits for
output.

In order to write this function, you should create a
function to add a new character into the huffman buffer
as the following

void addHuffmanChar(char * ch, Coding* htable, char*
huffman, int* nbit);

